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Abstract

The Korean government recommends intermittent operation of air purifiers (APs) as a measure 

to maintain indoor particulate matter (PM) concentrations below the mandatory standards and 

reduce exposure to indr PM2.5 (PM with a diameter smaller than 2.5 μm). However, there is 

no guideline to inform occupants of when and how long APs should be operated to comply 

with the standards. In this study, we developed a dynamic mass-balance model to predict indoor 

PM concentrations in an office considering penetration of outdoor particles, change in number 

of occupants, and operational status of the AP. The model fit and prediction accuracies were 

verified using the American Society for Testing and Materials (ASTM) D 5157 criteria and the 

k-fold validation technique. We observed that indoor PM2.5 concentrations were determined by 

infiltration of outdoor PM2.5, and indoor generation/resuspension by occupants and removal. For 

PM2.5 − 10(2.5 μm < diameter < 10 μm), the indoor concentrations were determined by interior door 

access and indoor generation/resuspension. The operation of an AP effectively decreased indoor 

PM2.5 concentration but not PM2.5−10. We found that our model accurately predicted indoor 

PM concentrations. Therefore, using the developed model, a guideline may recommend: 1) start 

the AP when the predicted indoor PM2.5 concentrations under no AP operation approached the 

standard (e.g., 90% of the standard); and 2) stop the AP when the indoor PM2.5 concentration 
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predicted under the assumption of no AP operation fell below the standard (e.g., 80% of the 

standard).
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1. Introduction

Exposure to PM2.5 (particulate matter with an aerodynamic diameter smaller than 2.5 μm) 

has been causally associated with respiratory and cardiovascular diseases [1]. Every 

year, Korea experiences frequent events of high outdoor concentrations of PM2.5 due to 

urbanization and yellow dust transported from Mongolia and China [2–4]. In Korea, outdoor 

air quality is managed by the Clean Air Conservation Act (CACA) and the government 

issues warnings to the public during high outdoor PM2.5 concentration events [5]. When 

the warnings are issued, the government implements control measures to reduce the 

outdoor concentrations. During the warnings, the government recommends that people stay 

indoors with windows and doors closed or wear a mask if they need to be outside [6,7]. 

Consequently, people spend even more time indoors than usual. Therefore, to minimize 

public exposure to outdoor PM2.5 that has infiltrated indoor environments, the Korean 

government also manages indoor PM2.5 concentrations with the Indoor Air Quality Control 

Act [8] or the School Health Act [9] depending on the type of indoor space.

In 2018, the Korea Ministry of Environment reinforced the ambient PM2.5 standard from 

annual mean concentration of 25 μg/m3 (daily mean of 50 μg/m3) to 15 μg/m3 35 μg/m3) to 

further reduce population exposures [10]. Accordingly, the government operates the outdoor 

PM forecast and public warning system that guides the public to reduce their exposure 

to outdoor PM2.5. According to the air pollution standards of the Korean CACA, the 

Office of Education has to prepare an air pollution response manual to manage indoor PM 

concentrations according to the recommendations of the PM forecast and public warning 

system [7]. As stated by the manual, indoor PM concentrations should be maintained below 

35 μg/m3 for PM2.5 and 75 μg/m3 for PM10. Indoor air quality (IAQ) managers should 

operate air filtration systems intermittently to comply with the standards if the indoor PM2.5 

concentration is expected to exceed the standard because of the excessive inflow of high 

concentrations of outdoor PM. However, to comply with the guideline, IAQ managers need 

to determine: 1) on which days they should operate the air purifiers (APs); and 2) during the 

day when they should start and stop the APs to comply with the standards. To provide the 

IAQ managers with an appropriate guideline, first we should understand how AP operation 

modifies the relationships between indoor and outdoor PM concentrations, and then develop 

accurate indoor PM prediction models to inform the IAQ managers of when they should 

operate AP.

To illustrate the relationships between indoor and outdoor PM concentrations, Chen and 

Zhao [11] summarized experimental and modeling studies and discussed the ratio of indoor 

to outdoor concentrations (I/O ratio), the infiltration factor, and the penetration factor. They 
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concluded that the mass-balance models using the I/O ratios and the infiltration factors 

did not sufficiently reflect the impact of the time-varying concentrations of outdoor PMs 

because the ratios and factors were defined based on the assumption of an equilibrium state 

that is rarely achieved in real life. And they found that the dynamic models simultaneously 

considering the effects of variable outdoor PM infiltration, and indoor removal and 

generation on indoor PM concentrations were best suited for describing time-varying indoor 

PM concentrations. They reported that the external wind environment was unsteady and 

irregular, which affected the momentary infiltration of outdoor PMs into indoors. Martin 

and Graça [12] wrote a review paper on PM2.5 sources and sinks in urban indoor and 

outdoor environments, variation in I/O ratios with building type, prediction of indoor PM2.5 

level, differences in exposure limits between countries, and indoor PM2.5 exposure reduction 

methods. Choi and Kang [13] evaluated the infiltration factors of PMs in 11 residential 

homes in South Korea after the indoor and outdoor pressure difference was fixed at 10 

Pa that far exceeded the actual range (0–5 Pa) of the measured pressure differential. Their 

estimated mean infiltration factor was 0.65 with a range of 0.38–0.88.

On the other hand, the use of APs indoors affects the indoor PM concentrations and thus 

the I/O ratios. Shaughnessy and Sextro [14] defined performance metrics of APs as the 

clean air delivery rate (CADR) and effectiveness ε . CADR represents the capability of 

providing a clean air supply, while the effectiveness is assessed as the benefit of using an AP 

in the context of its actual use. They showed that the effectiveness was affected by particle 

deposition rate and, hence, by particle size. Cox et al. [15] demonstrated that portable 

APs using high efficiency particulate air filtration could effectively remove traffic-related 

airborne ultrafine particles. Pei et al. [16] analyzed the effects of portable APs on reduction 

of indoor PM levels and reported that portable APs were widely used in South Korea. 

They reported that 81.4% of the investigated AP owners did not use APs at all and 18.6% 

used AP occasionally for 1–4 h a day on the mode with low or medium airflow. The 

main reasons not constantly using AP were increased energy consumption and noise. Noise 

also made the users manipulate AP operation, which had a negative impact on indoor PM 

reduction. Recently, Huang et al. [17] demonstrated that auto-mode air purifier operation, 

during which the air flow rate was controlled automatically based on the surrounding PM 

concentrations, was superior to manual operation. The random user manipulation of the AP 

based on personal preference and not following guidelines would have negative effect on 

indoor PM reduction. Therefore, a program of operation should be developed to maximize 

the effectiveness of AP use and save energy.

In analyzing the relationships between indoor and outdoor PM concentrations, application of 

the machine learning technique is increasingly popular. Wei et al. [18] published a review 

article summarizing 37 studies on IAQ predictions including PM2.5. They reported that 

the physical model without using the machine learning technique was suitable for cases 

in which the PM transport mechanism was obvious; however, statistical methods using 

machine learning were more practical if a large dataset was available although the transport 

mechanism was not apparent.

In our study, we aimed to develop useful guidance that can assist IAQ managers to develop 

a protocol for an AP operation schedule to maintain indoor PM concentrations below 
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the standard levels. To this end, 1) three-week-monitoring data of indoor and outdoor 

PM concentrations in an office at a university were analyzed to identify the transport 

mechanism; 2) a governing differential equation for indoor PM concentrations was derived 

to explain the mechanism; and 3) a model to predict indoor PM concentrations was 

developed by solving the differential equation using a machine learning technique with 

the input of the forecasted outdoor PM concentration data.

2. Theory and experimental set-up

2.1. Details of the test area

A schematic diagram of the tested office space is shown in Fig. 1. The office room, located 

in the College of Engineering at Kyung Hee University, had an area of 45 m2 and a ceiling 

height of 2.5 m, with one exterior window and one interior door from/to the hallway. A 

portable AP designed for a 60 m2 room (Model Blue Sky, Samsung, Seoul, South Korea) 

was installed to abate the indoor PM concentrations. The air purifier was equipped with a 

pre-filter, an activated carbon filter, and a HEPA filter with filtration efficiency of 99.9% 

for particles larger than 0.3 μm. The experiment was conducted in uninterrupted conditions 

to avoid affecting the occupants’ normal behavior. To analyze the impacts of the AP on 

indoor PM concentrations, experiments were first performed under the condition with no AP 

operation between December 30, 2020, and January 10, 2021, and then with continuous AP 

operation between January 11 and January 20, 2021. The number of occupants, the status 

of the exterior window and interior door opening, and the AP operation over time were 

recorded in a Microsoft® Excel spreadsheet during the measurement period. The office room 

was equipped with two fan coil units that only recirculated indoor air without outdoor air 

intake.

We simultaneously measured PM concentrations outdoors and in the hallway using air 

quality monitors (IAQ Station-CL1, Kweather, South Korea) at the outdoor and hallway in 

April 2021 (Fig. 2). According to the manufacturer, the uncertainty of particle sensors using 

laser light scattering technique in the monitor was ±15% for PM2.5 and ±20% for PM10. 

The hallway PM2.5 and PM10 concentrations closely followed the pattern of outdoor PM 

concentrations and the difference was within the uncertainty range. Therefore, for simplicity 

of model development, we assumed that the concentrations outdoors and in the hallway were 

the same.

2.2. Mass balance model

The mass balance model equation used in this study is shown in Eq. (1). The model 

accounted for PM intrusion from outdoors caused by increases in air change rate from 

occupants’ door access and particles generated per person with the number of occupants.

dCin
dt = ACH ⋅ P + PO ⋅ ΔR ⋅ Cout t − ACH + kd + kAP ⋅ Cin t + ṡ ⋅ R

(1)

where Cin: indoor PM concentration (# /m3, μg/m3),
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Cout: outdoor PM concentration (# /m3,μg/m3),

ACH: air change rate (1/hour),

P : effective penetration factor (no unit) accounting for particle intrusions from 

outside the office room through all cracks in the walls when all doors and windows 

are closed,

PO: coefficient {1/(hour × door access)} for additional PM penetration induced by the 

occupants’ entering or exiting the room by opening and closing the door,

ΔR: number of occupants’ door accesses for a given time interval. The absolute value 

was used to consider the increased air exchange by door access even with a decrease 

in number of occupants.

kd: particle deposition rate (1/hour),

kAP: particle removal rate using air purifier (1/hour),

ṡ: particle generation or resuspension rate per person (# or μg/m3/person/hour),

R: number of occupants in the room.

To determine the coefficients for Eq. (1), the indoor and outdoor PM concentrations 

were collected using optical particle counters with 31 channels in particle size (between 

0.25 and 32 μm) (Model 11-A GRIMM Aerosol Technik, Ainring, Germany). Of the 31 

channels, only 23 channels collecting up to 10 μm were analyzed for the study. The 

number concentration was measured and then converted to the mass concentration, and 

the aggregated concentrations for PM2.5 and PM10 were also calculated. We considered 

penetration coefficient (P) and deposition rate (k) modified by the air exchange rate (ACH) 

(P′ = ACH ⋅ P; PO′ = ACH ⋅ PO; and k′ = ACH + kd + kAP) in the model because the amount 

of infiltration and deposition varied by outdoor wind speed/direction and occupant’s door 

access [11].

2.3. Application of machine learning technique

Conventional machine learning produces a black-box model derived by using sampled data 

without accounting for system structure; however, Ma [19] defined a grey model to have 

a deterministic structure with model parameters that are estimated by sampled data. In 

this study, Equation (1) was used as the dynamic structure in the form of a differential 

equation to explain dynamic relation between outdoor and indoor concentrations where the 

four model parameters (P′, PO′, k′, and s) were estimated. Developing predictive models 

using machine learning generally requires sequential steps including determining model 

parameters and evaluating model fitting and predictive accuracy.

The measured indoor and outdoor PM concentrations, the first derivative of indoor PM 

concentration with respect to time, and the history of occupancy were plugged into Eq. (1). 

Then, the four model coefficients (P′, PO′, k′, and ṡ) were determined using the least-squares 

method to minimize the deviation between left-hand and right-hand terms of Eq. (1). The 
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open source statistical environment, R and DEop-tim [20] and minpack.lm [21] packages 

were used for all calculations [22].

The fitting and prediction accuracies of the developed model were validated according to 

the American Society for Testing and Materials (ASTM) D 5157 that provided the standard 

guide for statistical evaluation of the IAQ model [23]. In this study, the model performance 

metrics were the correlation coefficient r , slope b , and intercept a  of the linear regression 

between the observed and model-predicted values, normalized mean squared error (NMSE), 

fractional bias (FB), and similar index of bias based on variance (FS). They were calculated 

as shown in Eqs. (2)–(7):

r = ∑i = 1

n
Coi − Co Cpi − Cp

∑i = 1

n
Coi − Co

2 ∑i = 1

n
Cpi − Cp

2

(2)

b = ∑i = 1

n
Coi − Co Cpi − Cp

∑i = 1

n
Coi − Co

2

(3)

a = Cp − bCo

(4)

NMSE = Cp − Co
2

Co ⋅ Cp

(5)

FB = 2 ⋅ Cp − Co

Cp + Co

(6)

FS = 2 ⋅
σCp

2 − σCo
2

σCp
2 + σCo

2

(7)

where Co, Cp, i, and σ2 represent the observed data, model predictions, index, and 

variance, respectively. A bar over a symbol represents the mean value. The 
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acceptable ranges of the model performance metrics for an adequate model were 

r ≥ 0.9, 0.75 ≤ b ≤ 1.25, a ≤ 0.25Co, NMSE ≤ 0.25, FB ≤ 0.25, and FS ≤ 0.5.

The fitting accuracy is the measure of how closely the model-fitted values represent 

the actual measurements. In contrast, the prediction accuracy describes how accurately 

the developed model predicts actual PM measurements in test data or unmeasured 

concentrations. In machine learning, the k-fold validation was used to assess the prediction 

accuracy of the developed models. This method divides all of the data into k datasets, 

develops a model using k-1 datasets, and uses the remaining dataset as a test dataset [24]. In 

our study, all measured data were grouped into 21 datasets by the day of the measurement. 

Then a model was developed with the combined data of 20 datasets, and the remaining test 

data were used to compare with the PM concentrations predicted by the developed model. 

This process was repeated 20 times with various test data. The accuracy of the predicted data 

was evaluated with the k-fold validation test using the six performance metrics above.

The effectiveness of AP ε  was also evaluated. And it was defined as follows:

ε = Cin
AP OFF − Cin

AP ON

Cin
AP OFF

(8)

where Cin
AP OFF and Cin

AP ON represent the measured or predicted indoor PM concentrations when 

the AP is off or on, respectively.

3. Results and discussion

3.1. Analysis of raw data

Fig. 3 (a)–(d) compare the number concentrations of indoor and outdoor PMs by particle 

size. Of the 23 channels shown in Table 1, four channels (0.265, 0.900, 2.250, and 9.250 μm) 

were selected to show the overall trend of changes in concentrations over time. The indoor 

PM concentrations measured from the smallest channel 0.265 μm  were similar to and 

followed the pattern of changes in outdoor PM concentrations while the AP was not being 

operated (unshaded area in Fig. 3). As particle size increased, the indoor PM concentrations 

were lower than the outdoor PM concentrations but continued to follow the pattern of 

changes in outdoor PM. In the largest particle size channel 9.250 μm , particles were not 

detected in the indoor air most of the time. During AP operation (shaded area in yellow 

in Fig. 3), the indoor PM concentrations from the smallest particle channel 0.265 μm  were 

much lower than outdoors and the difference was evident compared to other channels. 

Generally, the indoor concentrations from all channels were lower during the period of AP 

operation than no AP operation although the outdoor PM concentrations were higher during 

the period of AP operation than no AP operation.

Fig. 4 shows the average values of the ratios of indoor to outdoor PM number concentrations 

over the measurement time in all channels by AP operation. When the AP was not running, 

the ratio was close to 1 for the smallest particle channel but decreased as particle size 
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increased. On the other hand, when the AP was in operation, the ratio decreased in all 

channels, with greater reduction for smaller particles (≤ 3.0 μm in diameter) than larger 

particles > 3.0 μm . The analyses using mass concentration data showed a similar pattern 

to those using the number concentrations. These differential effects by particle size can be 

explained by the mass balance of the effects of the three factors (particle penetration, particle 

removal, and generation mechanism by particle size). The indoor transmission mechanism 

of external particles determined with Eq. (1) will be discussed in detail in a later section.

3.2. Model development

The indoor PM concentrations with AP in operation shown in Fig. 3 are the result of 

the mass balance of particle penetration, settling by gravity on indoor surfaces, surface 

adsorption, particle removal by AP, and particle generation by occupants. By plugging the 

measured indoor and outdoor PM concentrations and the number of occupants into Eq. (1), 

the model coefficients were calculated using the least-squares method. When we developed 

the model, we assumed that AP operation only affected particle removal but not particle 

penetration and generation. In other words, among the model coefficients obtained using 

the data measured without AP operation, P′, PO′, and ṡ stayed the same regardless of AP 

operation, while k′ changes by the kAP term in Eq. (1) that is activated by AP operation.

The model coefficients determined by particle size using PM number concentration data 

are shown in Fig. 5. The coefficient P′, representing the modified (by ACH) penetration 

of external PM into indoors, peaked in the 0.265 μm and 2.25 μm size channels, indicating 

that penetration of PM from outdoors was the largest P′ > 0.05  at the particle sizes smaller 

than 0.45 μm and between 1 and 3 μm. Considering that the ACH was constant regardless of 

particle size (Fig. 5(a)), the shape and changing pattern of penetration factor P  by particle 

size would be the same as those of P′. The value of P′ was low at particle sizes between 

0.45 and 1 μm and approached zero for dust particles larger than 3 μm in diameter, indicating 

that particles in those ranges in size do not effectively penetrate the building envelope. The 

model constant k′ (particle deposition or removal rate) gradually increased with particle 

size in the period of no AP operation (Fig. 5(b)), indicating an increase in gravitational 

settling with increasing mass of larger particles. When the AP was in operation, the model 

constant k′ substantially increased for all PM sizes compared to that for no AP operation 

since the AP filtered indoor particles. The deposition rate peaked at approximately 3 μm-size 

particles and then became unstable because the measured indoor PM number concentrations 

were extremely low (<10), and the detection by the particle counter became discontinuous 

(Fig. 3(d) in the previous section). The determined PO′, representing the effect of additional 

penetration by occupant door access, is shown in Fig. 5(c). It started to increase above 0.05 

for particles larger than 1.5 μm in diameter. Fig. 5 (d) also shows that the indoor generation 

per person ṡ  gradually decreased with particle size when the PM number concentration 

data were used; however, the contributions of larger particles to the PM mass concentration 

were much more significant than smaller ones when the mass concentration data were 

used because of high mass of the larger PM. The model parameters using the number 

concentrations had similar shape and pattern to those using mass concentrations, except for 

the particle generation coefficient.
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The experiments and measurements were performed under normal circumstances without 

interference, and the effects of particle penetration, removal, and generation were considered 

simultaneously in the same model. Therefore, the increase in concentrations of indoor PM is 

a collective effect of particle penetration, occupant door access, and indoor generation and 

resuspension, and the individual effects could not be separately estimated.

Analysis of PM concentrations from all 23 channels was useful to understand the infiltration 

mechanisms by particle size. However, we developed a forecast model for the aggregated 

indoor PM2.5 and PM10 concentrations because 1) government-forecasted outdoor PM data 

as the input for the model were available only for PM2.5 and PM10; and 2) indoor PM levels 

in Korea were managed according to the standards for indoor PM2.5 and PM10 [7]. Fig. 6 

compares the measured and model-fitted indoor PM concentrations. The solid lines in the 

figure represent the measured indoor PM concentrations, and the dashed lines the fitted ones. 

Although the fitted values generally agreed well with the actual measurements, in some 

cases the fitted PM10 did not meet the inequality condition of PM2.5 ≤ PM10 concentration. 

To comply with the inequality condition, the model using the PM2.5−10 (coarse particles 

between 2.5 and 10 μm in aerodynamic diameter) data was developed and then coarse 

particle concentrations were separately fitted. The black dash-dotted line in Fig. 6 represents 

the fitted values estimated from summing the fitted values for PM2.5 and PM2.5−10, which 

always satisfied the inequality condition and improved the model fitting accuracy compared 

to the fitted values using PM10 for modeling.

Table 2 presents the model coefficients determined for PM2.5 and coarse particles. The 

results indicate that the penetration effect was more evident for PM2.5 than coarse particles, 

while the effects of particle removal, occupant door access, and particle generation/

resuspension were larger for coarse particles than for PM2.5.

3.3. Model validation

Fig. 7 shows the model performance metrics (r, b, a/Co, NMSE, FB, and FS) estimated using 

the actual measurements Co  and model fitted values Cp . The four metrics b, a/Co, NMSE, 

and FB met the requirements for an adequate model suggested in ASTM D 5157 for all 

size channels. The correlation coefficient, r, and the similar index, FS, did not meet the 

requirements for the channels with larger particle size ≥  3 μm and ≥  4 μm, respectively. 

However, when we used models for PM2.5 and PM10, all the model performance metrics 

satisfied the criteria for an adequate model (Table 3). The prediction accuracies were 

tested by evaluating the metrics using the k-fold validation method as presented in Table 

4. Although the correlation coefficients were marginal, all other metrics met the adequate 

model requirements. Therefore, the developed predictive model based on indoor and outdoor 

PM monitoring data, the number of occupants, and the status of AP operation indoors 

appeared to adequately forecast indoor PM concentrations in an office room.

3.4. Impact analysis of each term in the governing equation

Fig. 8 shows the relative impacts of each term on the right-hand side in the Eq. (1) 

determining the indoor PM concentrations. The sum of the impacts of all terms was set 

to 100% in each condition in the figure-i.e., relative impact. For the condition with no 
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occupant and no AP operation (Fig. 8(a)), particle deposition was slightly larger than 

particle penetration for most particle sizes, which resulted in decreases in the indoor PM 

concentrations over time. The average indoor PM concentrations for particles larger than 

3 μm in diameter were lower than 1 μg/m3. The concentrations of particles larger than 7 μm
in diameter decreased below 0.1 μg/m3 or to the undetectable level for most of the time.

The particle removal effect was nearly zero in some time periods when the airborne 

PM concentrations were close to zero. This resulted in an artifact of the highest 

relative penetration effect, especially for the 9.250 μm channel for which the indoor PM 

concentrations were zero most of the time.

Under the condition with occupants but no AP operation (Fig. 8(b)), the particle removal 

effect was less than 50% for all particle sizes. The impact of occupant door access on 

indoor PM2.5 concentrations was negligible. The combined effects of particle penetration, 

indoor particle generation, and resuspension were similar to the effects of particle removal 

in all channels. In contrast, the particle penetration effects became negligible for coarse 

particles, and the combined effects of door access and indoor generation/resuspension offset 

the removal effects. Previous studies [23] have reported similar findings that fine particles 

infiltrate from the outdoors better than coarse particles, whereas occupant activities mainly 

contribute to the coarse particles in the indoor air.

The relative effects of AP operation on each term were analyzed (Fig. 8(c) and (d)). As 

shown in Fig. 5(b) in the earlier section, the coefficient k′  itself under AP operation 

substantially increased especially in particles larger than 2 μm in diameter, compared to that 

with no AP; however, relative impact of particle removal (deposition) with AP operation on 

indoor PM concentrations was only moderately increased (Fig. 8(c) and (d)) because the 

net removal effect is determined by the product term of the deposition coefficient k′  and 

indoor PM concentrations that significantly decreased during AP operation. Furthermore, the 

outdoor PM concentrations during the period of AP operation were higher than those during 

the period of no AP operation, which resulted in increased penetration. The measurable 

increase in the relative effects of occupant door access on indoor coarse PM concentrations 

was observed, which was mainly influenced by the combination of high outdoor and low 

indoor concentrations during the period of AP operation.

3.5. Analysis of air purifier performance

Fig. 9 compares the average indoor and outdoor PM concentrations by particle size and AP 

operation. The outdoor PM concentrations during the period of AP operation were higher 

than those during no AP operating as described earlier. Regardless of AP operation, average 

indoor PM concentrations were lower than outdoor concentrations for all particle sizes. 

However, the ratio of indoor to outdoor PM concentrations decreased with AP operation 

compared to without AP operation.

The effectiveness of air purification could be calculated by predicting the indoor PM 

concentrations using the prediction model, assuming that the AP was operating for the 

period of no AP operation or vice versa. Fig. 10 shows the measured indoor and outdoor 

and predicted indoor PM concentrations by AP operation for the smallest particle channel 
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0.250 − 0.280 μm , the 2.250 μm channel 2.0 − 2.5 μm , and the integrated PM2.5 and PM10. 

Before January 11, 2021 when the AP was turned on, the predicted concentrations were 

based on the assumption of AP operation; however, on January 11, 2021 and onward, the 

predicted concentrations were based on the assumption of no AP operation. The figure 

indicated that the measured and predicted values were in reasonable agreement in both 

periods before and after the AP was turned on. Therefore, the developed prediction model 

appeared to be useful to predict indoor PM concentrations with time-varying outdoor PM 

concentrations for office rooms with a similar condition.

Fig. 10 (c) and (d) also show the concentrations of measured and predicted PM2.5 and PM10, 

respectively. These two plots demonstrate that the developed model accurately predicted the 

trends of the time-varying indoor PM concentrations. Therefore, our findings indicate that 

our dynamic mass-balance model could be used to predict indoor PM concentrations and 

determine when the AP should be turned on or off to reduce indoor exposure to PM. The 

Korean government standards for indoor PM2.5 and PM10 indicate that these concentrations 

shall not exceed the standards under any condition. To comply with these standards, it could 

be advised that the AP should be turned on when the predicted indoor PM concentration 

without AP operation reaches 90% of the standard. On the other hand, when the predicted 

concentration with an assumption of no AP operation during the period of AP operation is 

lower than 80% of the standard, it could be advised to turn off the AP.

The shaded areas in Fig. 10 represent the numerator of Eq. (8), i.e., the amount of particle 

mass concentration removed by AP operation. Fig. 11 presents the variation in estimated 

effectiveness of the AP used in our study by particle size. The effectiveness was greater 

than 75% for PM smaller than 1 μm in diameter and significantly decreased as particle size 

approached the 1 − 3 μm range. Then, it substantially increased for particles approximately 

3 − 4 μm in size. For PM larger than 4 μm, again the effectiveness sharply declined. The 

particle removal effectiveness of the AP for PM2.5 and PM10 was estimated to be 86.4% 

and 86%, respectively. The particle removal effectiveness of AP is a complicated function 

of particle penetration from outdoors, gravitational deposition, flow field in the room, clean 

air delivery rate (CADR) of the air purifier, and filter characteristics. However, Shaughnessy 

and Sextro [14] simplified the particle removal effectiveness ε  as below:

ε = CADR
V ⋅ kAP OFF

′   +  CADR

(9)

where V represents the volume of the office room. Therefore, removal effectiveness would 

decrease with particle size as shown in Fig. 11 since kAP OFF 
′  increases with particle size as 

shown in Fig. 5(b).

3.6. Prediction model

Fig. 12 shows the data flow of a prediction system for the indoor PM concentrations 

developed in this study. First, data of the indoor and outdoor PM concentrations, occupant 

history, and AP operation history are collected for three or more weeks. The indoor PM 
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concentration prediction model could be developed using Eq. (1) as described in the 

previous sections. Then the time-varying indoor PM concentrations could be predicted using 

the developed model with the new input data of the outdoor PM forecast data, expected 

occupancy, and AP operation schedule. The AP operation schedule to control the indoor 

PM concentrations can be developed based on the predicted indoor concentrations as shown 

by the solid arrows in Fig. 12. The accuracy of the prediction model (dash-dotted arrows) 

could be further evaluated if the monitoring data of indoor PM were available. Then the 

initial prediction model might be improved by either calculating new model coefficients or 

reformulating the governing equation.

The Korean government has implemented a PM sensor rating system since 2019. The 

products with the best performance should meet 80%, 80%, and 0.8 or higher values for 

the repeatability, accuracy, and determination coefficient, respectively. We are planning 

to develop an intelligent strategy to help occupants develop a schedule for indoor PM2.5 

abatement using our study findings to develop a prediction model and indoor monitoring 

data using low-cost sensor technology, instead of relying on data from expensive and 

noisy particle counters. Indoor PM measurement data, if available, would help to develop 

improved prediction models to provide accurate recommendations on AP operation to 

reduce indoor PM exposure in occupants.

It was challenging to consider particle size composition when estimating the effective 

penetration factor P′  using the integrated PM concentrations. For example, more outdoor 

PM would penetrate indoors if smaller particles are dominant in the size distribution of 

the outdoor PM. Since the size distributions of PM are different in every environment, 

prediction errors can occur and thus a correction method is needed. As shown in the 

previous section, the use of PM2.5 and PM2.5−10 instead of PM10 in modeling might alleviate 

this problem since it allows the model to partly reflect the size distribution of PM.

4. Conclusions

The motivation for this study was to answer the question of when to start and stop indoor 

air purifiers to comply with the government’s practical guidelines and thus reduce indoor 

exposures from infiltrated outdoor PM2.5 during high outdoor PM concentration events. 

Using the data of indoor and outdoor PM2.5 concentrations, occupancy, and door access 

histories, we developed a dynamic mass-balance model with which future indoor PM 

concentrations could be accurately predicted. The model accounted for the time-varying 

particle penetration from outdoors, indoor particle removal, effects of occupant door 

access, and internal particle generation/resuspension to predict the dynamic indoor PM 

concentrations. From our study, we found that the developed model could be used to predict 

the indoor PM concentrations for PM2.5 and PM10. Our model can be used to inform IAQ 

managers or occupants of when to turn on or off the AP to maintain indoor PM levels 

below the standards. This information could also maximize effectiveness of AP use and save 

energy through optimization of operational costs. If indoor monitoring data are available, 

model prediction could be improved through validating and adjusting the estimated model 

coefficients.
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Fig. 1. 
Schematic diagram of the experimental office area and instrument setup. Cin t : indoor PM 

concentration at time t; Cout t : outdoor PM concentration at time t; PM: particulate matter; 

CO2: carbon dioxide.
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Fig. 2. 
Comparison of (a) PM2.5 and (b) PM10 concentration measurements.
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Fig. 3. 
Indoor and outdoor particle number concentrations from the four selected channels (0.265, 

0.900, 2.250, and 9.250 μm). The shaded areas represent the period when the air purifier was 

in operation.
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Fig. 4. 
Average values of the ratios of indoor to outdoor particle concentrations over the 

measurement time period by AP operation. The error bars represent one standard deviation 

of the ratios.
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Fig. 5. 
Model parameters estimated using Eq. (1): (a) P′, (b) k′, (c) PO′, and (d) ṡ, where the shaded 

areas represent the 95% confidence interval.
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Fig. 6. 
Comparison of the model-fitted values with actual measurements of indoor and outdoor 

PM2.5 and PM10.
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Fig. 7. 
Comparison of model accuracy metrics by particle size. The conditions in parentheses 

represent the criteria recommended in ASTM D 5157.
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Fig. 8. 
Relative contribution of each term (penetration, P′; deposition, k′; door access effect, 

PO′; and generation/resuspension, ṡ) in the right-hand side of Eq. (1) to indoor particle 

concentrations in four scenarios: (a) AP off and no occupant; (b) AP off with occupants; (c) 

AP on and no occupant; and (d) AP on with occupants.
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Fig. 9. 
Outdoor and indoor particle number concentrations by particle size and AP operation.
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Fig. 10. 
Comparison of actual measurements of indoor particle concentrations with the predicted 

concentrations from the prediction model for (a) 0.265 μm and (b) 2.250 μm channels, 

(c) PM2.5, and (d) PM10. The red real line in the figure represents the measured PM 

concentrations. The blue dashed line represents the model predictions under no AP 

operation, and the green dash-dotted line shows the model predictions under AP operation. 

Before January 11, 2021, the green dash-dotted line is the model predictions for the assumed 

condition of AP operation while the AP was not operated. After January 11, 2021, the blue 

dashed line is the model predictions for the assumed condition of no AP operation while the 

AP was being operated.
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Fig. 11. 
Size-specific particle removal effectiveness of AP estimated from the prediction model.
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Fig. 12. 
Schematic diagram of a forecast system for indoor PM concentrations.
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Table 1

Nominal channels for particle diameters of 10 μm or smaller and size ranges for each channel.

Nominal value μm Range μm Nominal value μm Range μm
0.265 0.250–0.280 1.450 1.300–1.600

0.290 0.280–0.300 1.800 1.600–2.000

0.325 0.300–0.350 2.250 2.000–2.500

0.375 0.350–0.400 2.750 2.500–3.000

0.425 0.400–0.450 3.250 3.000–3.500

0.475 0.450–0.500 3.750 3.500–4.000

0.540 0.500–0.580 4.500 4.000–5.000

0.615 0.580–0.650 5.750 5.000–6.500

0.675 0.650–0.700 7.000 6.500–7.500

0.750 0.700–0.800 8.000 7.500–8.500

0.900 0.800–1.000 9.250 8.500–10.000

1.150 1.000–1.300 – –
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Table 2

Parameters determined from the model fitting process for PM2.5 and PM2.5−10 using Eq. (1).

Term Unit PM2.5 PM2.5−10

P′ 1
ℎour

8.536 × 10−2 7.054 × 10−3 ± 1.715 × 10−3

kAP OFF
′ 1

ℎour
1.482 × 10−1 1.412 ± 1.510 × 10−1

kAP ON
′ 1

ℎour
1.096 ± 1.573 × 10−2 5.210 ± 2.087 × 10−1

PO′ 1
ℎour⋅door access

9.252 × 10−2 1.031 × 10−1 ± 1.069 × 10−2

ṡ μg
m3 ⋅ ℎour ⋅ person

1.684 × 10−15 1.237 × 10−1 ± 1.963 × 10−2
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Table 3

Model performance metrics indicating model fit accuracy for PM2.5 and PM10.

r b a/Co NMSE FB FS
PM2.5 0.905 0.922 0.120 0.069 −0.0470 −0.0451

PM10 0.904 0.914 0.128 0.067 −0.0468 −0.0257
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Table 4

Model performance metrics indicating model prediction accuracy for PM2.5 and PM10.

r b a/Co NMSE FB FS
PM2.5 0.883 0.876 0.157 0.085 −0.0387 −0.0178

PM10 0.882 0.869 0.164 0.083 −0.0387 −0.0339
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